If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-750=-4.9t^2-3t
We move all terms to the left:
-750-(-4.9t^2-3t)=0
We get rid of parentheses
4.9t^2+3t-750=0
a = 4.9; b = 3; c = -750;
Δ = b2-4ac
Δ = 32-4·4.9·(-750)
Δ = 14709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14709}=\sqrt{1*14709}=\sqrt{1}*\sqrt{14709}=1\sqrt{14709}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-1\sqrt{14709}}{2*4.9}=\frac{-3-1\sqrt{14709}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+1\sqrt{14709}}{2*4.9}=\frac{-3+1\sqrt{14709}}{9.8} $
| 4x^2+5=3x+6 | | -9-3x+x=3 | | -3x2+5.5x+1=0 | | 4r^2+5=3r+6 | | x+5x-2=6 | | x+57=20x | | x+57=10x | | x2+18x=15 | | 3x+×-20=180 | | 9a-6a=3a-33+2a | | 4(-3x+7=2(x-3) | | 4x-2(20-x)=60 | | 105/150=x/(x+39) | | 10(c+61/5)=102 | | -v^2-16v+132=-10v-3 | | -0.0075n=0.00024 | | 0.0075n=0.00024 | | n/8=25/100 | | x/7+14=12 | | 6x-85=100 | | 45=-5x(-10+x) | | n2=25 | | -2x^-4=-8x | | 10=154-10t-16t | | 105/21=35/n | | 1.2c=0/6 | | 5=1.5x+1 | | 10=154-10t-16t2 | | F(x)=1/2(x-4)^-1 | | -7(4x-7)=107 | | 2.5d=14/5 | | 7y+94=4+10 |